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Abstract

Wave transmission characteristics in elastic media that have periodic microstructure over a finite spatial length are
examined theoretically as well as numerically. Two classes of such media are demonstrated, namely, one-dimensional
multilayered media with finite-length periodicity and two-dimensional composite media with square arrays of aligned
fibers within a finite length. From these one-dimensional and two-dimensional analyses, the influence of the finite-length
periodicity on the wave transmission characteristics is discussed. In these media, there are frequency bands (stop bands)
where the energy transmission coefficient appears to vanish or takes very low values, while in pass bands it oscillates
with the frequency due to the finite-length periodicity. It is theoretically demonstrated in the one-dimensional case
of multilayers how the frequency intervals of the oscillation in the transmission spectrum depend on the repeating num-
ber of the periodic cells as well as other acoustic and geometrical parameters. The results of the two-dimensional fiber
arrays, which are obtained numerically by solving the equations of the SH wave multiple scattering, are shown to fit
well in the one-dimensional framework of multilayered structures up to a certain frequency encompassing the first stop
band. This similarity between two classes of problems is demonstrated by appropriately identifying the one-dimensional
reduced transfer matrix for a single cell that is representative of the periodic fiber array.
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1. Introduction

Wave propagation in periodic media such as multilayered structures has long been the subject of exten-
sive research in various branches of optics, acoustics and elastodynamics, as documented by Brillouin
(1953), Ewing et al. (1957) and Brekhovskikh (1960). Also, the elastic wave propagation in composite media
with two- and three-dimensional periodic phase arrangements have been studied by many researchers,
Nelson and Navi (1975), Kinra and Ker (1983), Kushwaha et al. (1993, 1994), Naciri et al. (1994), Suzuki
and Yu (1998), Cai and Williams (1999), Henderson et al. (2001), to name but a few. In ideal situations
where the microstructural periodicity extends over the whole space, one can resort to the so-called Bloch
theorem and the analysis is reduced to the problem for a single unit cell. When the periodicity is of an
incomplete nature, for example when the periodic arrangement is confined within a finite spatial domain,
the analysis becomes cumbersome and remains as an intriguing topic of investigation.

Recently, Biwa et al. (2004) formulated a numerical scheme for multiple scattering of shear (SH) waves
in unidirectional fiber composites based on the eigenfunction expansion and a collocation technique. Their
procedure is capable of treating the multiple scattering by a number of fibers arranged either regularly or
randomly. With this procedure, these authors examined the transmission spectra for the square as well as
hexagonal fiber arrangements, and demonstrated that so-called stop bands were formed when the wave
number satisfied a certain condition. Furthermore, the energy transmission coefficient in pass bands was
found to oscillate with the frequency, with increasing amplitude and decreasing interval when approaching
the edge of a stop band. This oscillatory behavior was considered to be due to the finite length of the region
in which the fibers were arranged, but no decisive conclusions were drawn in that paper.

Understanding of such oscillatory nature in transmission spectra through finitely periodic media is
important when analyzing their acoustic properties, since the repeatable number of periodic cells is inevi-
tably finite in most situations. Such issues are attracting increasing attention regarding the application of
so-called photonic crystals (Bendickson et al., 1996; Sakoda, 1997; Jeong et al., 2002), and their acoustic
analogue of phononic band-gap structures (Page et al., 2001; Platts et al., 2002; Yang et al., 2002).

The present paper aims to explore the oscillatory response of the SH wave transmission in elastic media
with microstructural periodicity of finite length from theoretical as well as numerical points of view. For
this purpose, two classes of such media are considered, namely, one-dimensional layered media with
finite-length periodicity and two-dimensional composites with square arrays of aligned fibers within a finite
length. The former example, analyzed by the one-dimensional transfer matrix approach, offers a basic in-
sight into the phenomenon at hand on a sound theoretical foundation. The latter example partly corre-
sponds to the computational results in the previous paper (Biwa et al., 2004) but is reproduced here
with finer frequency resolution in order to demonstrate the oscillation characteristics more clearly.

From these one-dimensional and two-dimensional analyses, the effect of the finite periodicity on the
wave transmission characteristics is discussed. In particular, it is theoretically demonstrated in the one-
dimensional case how the frequency intervals of the oscillation depend on the repeating number of the
periodic cells as well as other acoustic and geometrical parameters. The features in the two-dimensional
examples are examined based on the one-dimensional theoretical framework, by appropriately identifying
the one-dimensional transfer matrix for a single cell that represents the periodic fiber array.

2. Wave transmission in multilayered structures of finite length

2.1. One-dimensional transfer matrix formulation

In this section, the wave propagation in multilayered structures is considered based on the one-dimen-
sional transfer matrix formulation (Thomson, 1950; Haskell, 1953). The following derivation is similar to
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Fig. 1. One-dimensional periodic multilayered structure of finite length.

the work by Bendickson et al. (1996) that rests on a slightly different formulation. As shown in Fig. 1, the
medium to be considered consists of an infinite elastic matrix (density p;, shear modulus y;) with N embed-
ded layers of dissimilar elastic solid (density p,, shear modulus u,), which are of width d, and located with
the equal spacing d, For the present formulation, it is convenient to regard this structure as the N-times
repetition of a unit cell consisting of a matrix layer (referred to with the subscript 1) of length &, and a rein-
forcing layer (subscript 2) of length d> which is referred to as the N-cell layered structure. It is characterized
by the periodic microstructure with period A=d;+d, and the total length NA that is embedded in the
infinite matrix.

The present analysis considers the elastic wave propagation in the x-direction taken normal to the layers
with the out-of-plane polarization (SH wave). Then the governing equation for the one-dimensional dis-
placement field u(x) in the time-harmonic case with the angular frequency w reduces to

2
% +kEu=0 (1)

for each layer, where

ky = w/cza Cy =V :u'oc/pzx (2)

are the wave number and the shear wave speed in each phase (x=1,2). For convenience, the acoustic
impedances are introduced as

W, =p,cu, o=12. 3)
The continuity of the displacement as well as the shear traction at the boundaries between neighboring

phases leads to the following matrix relation for the displacements and the shear stresses at the location
x=jA and x=(j— 1)A, where j=1,2,..., N:

{u(}"/l)}:M{u((]:—l)/l)}7 )
(jA4) o —DA4)
where M is the transfer matrix for a single cell and explicitly given by
My My €08y, cosy, — (W /W,)siny, siny, (siny, cosy,/ W+ cosy, siny,/W,)/w
B {le Mzz} N {—W(Wl siny; cosy, + Wrcosy siny,) cosy cosy, — (Wa/Wy)siny, siny,
(5)
and the normalized wave numbers are defined as
1 =kidy = wdi/c1, 7, =kady = wdy/c. (6)
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It is noted that the origin x =0 has been taken as shown in Fig. 1, at the left boundary of the leftmost cell. A
simple algebraic manipulation on the components of M in Eq. (5) shows

thMZMllez—M12M21=1. (7)

2.2. Bloch phase for the infinite-cell layered structure

When the cells are infinitely repeated to cover the whole space (N—o0), the Bloch theorem states that the
variables at adjacent cells are related as

(100 _guaf - D)) 5
() (- 1)4) J

where K is the Bloch wave number and ff = KA is referred to as the Bloch phase. Egs. (4) and (8) constitute
an eigenvalue problem for M, where exp(iKA) is identified as an eigenvalue of M. With Eq. (7), it implies

(eiKA)2 — (M]] +M22)eiKA +1= 07 (9)

which leads to

2 2

1 w
cos(KA) = E(MH + Mx) = cosy; cosy, — W

Namely, the Bloch phase = KA of the infinite-cell layered structure is related to the angular frequency w
and the parameters of the single cell, Wy, W>, d,/c, and d/c».

sin y, sin p,. (10)

2.3. Transfer matrix for the N-cell layered structure
From the Cayley—-Hamilton theorem applied to M and Eq. (9), it is seen that M satisfies the following
matrix equation:
M? — 2cos fM +1 =0, (11)

where I denotes the identity matrix. Furthermore, it can be shown from mathematical induction arguments
(cf. Bendickson et al., 1996) that M" is expressed by

sin N sin((N — 1

M = sin ﬁﬁM B ((sinﬁ )ﬂ) L (12)

It is clear that M gives the transfer matrix for the N-cell layered structure, i.e.,
u(NA u((N—-1)4 u(0

) e ) R ®
From Eq. (12), the components of M" are explicitly given as

MY = {MN“ Mle] .I[M“sinNﬁ.sin(Nl)ﬁ . Mlzsin.Nﬁ . (14)

My My sin f8 M sinNp My sinNf —sin(N — 1)

When the harmonic wave is incident on the N-cell layered structure in the positive x-direction (Fig. 1),
the displacements outside the N cells are written as

u(x) = exp(ikix) + Ry exp(—ikix), x<0, (15a)
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u(x) = Tyexp(ikix), x=NA, (15b)

and the corresponding shear stresses as t(x) = u;du/dx , where Ry and T are the amplitude reflection and
transmission coefficients for the N-cell layered structure. Substitution of these expressions into Eq. (13)
gives Ty as

2exp(—ikNA)

Ty = - . 16
N My + My — (W My, — My /(@) (16)

The energy transmission coefficient of the N-cell layered structure is simply calculated as
Ty =TnTy, (17)

where the asterisk * denotes the complex conjugate.
When the absolute value of the rightmost-hand side of Eq. (10) does not exceed unity, the Bloch phase f
is real. On the other hand, when it exceeds unity,  becomes complex and is written as

B=mn+if (m=12,..). (18)
In this case, Eq. (12) can be rewritten as
N _ cosmNT sinh {VBM _ cos(m(N — I)m) sinh(~(N - 1)[?)1
cosmmsinh 8 cosmmsinh f§

and T is still given by Eq. (16).

M

(19)

2.4. Energy transmission coefficient

From the above result, the energy transmission coefficient T, of the N-cell layered structure is governed
by the number of cells N, the impedance mismatch W,/ W), the ratio of the non-dimensional wave numbers
(the ratio of the times of flight) in the two phases y,/y; =kads/(k1dy) = (da/¢2)/(d1/c1) as well as the normal-
ized frequency w/w,, where

i
T difen + dofer) 20
corresponds to the angular frequency at which the reflected waves from neighboring cells interfere construc-
tively. It is noted that when (d »/c»)/(di/c1) = 1, the periodic structure meets the so-called quarter-wave stack
condition (Bendickson et al., 1996).

In order to demonstrate the influence of the three parameters listed above, the case with N=10, W,/
W, =1.5 and (d»/c»)/(d1/c1) =1 is taken as a reference, and the frequency dependence of the energy trans-
mission coefficient of the N-cell layered structure is computed by varying one parameter while keeping the
other two unchanged. Figs. 2-4 show the computed results for the influences of the cell number N (Fig. 2),
the impedance mismatch W ,/W, (Fig. 3), and the time-of-flight ratio (d»/c,)/(d\/c;) (Fig. 4).

In Fig. 2, three curves with N=135, 10 and 20 exhibit a stop band at w/wy= 1. It is seen that the transmis-
sion coefficient is very low for N=35 and nominally vanishes for N=10 and 20 in this stop band. Further-
more, the edge of the stop band is sharper for larger N. Outside of the stop band (in pass bands), the three
curves oscillate against the frequency, with increasing amplitude as the frequency approaches w/wo=1. It is
also seen that the frequency interval of the oscillation is smaller when the cell number A is larger. In Fig. 3,
three results with W,/W;=1.25, 1.5 and 2 are shown, where the band gap opens wider and the oscillation
amplitude is greater when the impedance mismatch is greater. Finally, Fig. 4 shows four curves with (d»/c,)/
(di/c1)=1, 1.1, 1.5 and 2 in a wider frequency range up to w/wo= 3.5. It is seen that the occurrence
of stop bands depends remarkably on (do/cy)/(di/c;). Namely, although the energy transmission
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Fig. 2. Energy transmission spectra of the one-dimensional multilayer for different cell numbers.

T
N=10, (d/c2)/(d/cr)=1
—==- Wi/W=125
— Wi/ Wi=1.5
- WAl Whi=2

Energy transmission coefficient

|
0.5

Normalized frequency @/,

Fig. 3. Energy transmission spectra of the one-dimensional multilayer for different impedance ratios.
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Fig. 4. Energy transmission spectra of the one-dimensional multilayer for different time-of-flight ratios.

coefficients for (d»/c,)/(d,/c1)=1.1 and 1.5 exhibit stop bands at the frequencies w/wo=1, 2 and 3, the result
with (da/¢,)/(d1/c1) =1 lacks a band gap at w/wy,=2, and that with (d»/c,)/(d;/c;) =2 lacks one at w/wy=3,
due to the negative interference of the reflected waves from the interface within each cell.
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3. Wave transmission through periodic fiber arrangements of finite length
3.1. Fundamental equations of SH wave multiple scattering

In this section, the time-harmonic SH wave propagation in a two-dimensional composite with periodic
fiber arrangements of a finite spatial length is considered. The matrix (shear modulus x; and density p;) and
the fibers (u,, p, and radius @) are assumed homogeneous and isotropic, and the wave numbers as well as
the velocities in both phases are given by Eq. (2) with the subscripts 1 and 2 now being interpreted to rep-
resent the matrix and the fiber, respectively. The time-harmonic wave field u(x1, x,) in this composite obeys
the two-dimensional scalar Helmholtz equation:

o
— Pu=0 =1,2. 21
(ax% + 6X%>u + ocu 9 o 9 ( )

It is assumed that the fiber-reinforced region consists of the repetition of fundamental blocks with length
L and height H as shown in Fig. 5. In the fundamental block, total of N, fibers are arranged to form a
square lattice, containing N vertical columns of fibers. For example, in the particular arrangement shown
in Fig. 5, N=26 and N;=6 N=156. The blocks with the same fiber arrangement are repeated infinitely in
the x,-direction to build up the whole fiber arrangement. Such arrangements are analogous to the N-cell
layered structure considered in Section 2, and referred to as the N-cell fiber arrangement.

In the multiple scattering theory (Waterman and Truell, 1961), the wave field that impinges on a generic
fiber is called the exciting field to that fiber, and given by the sum of the incident wave u'"(r) =exp(ik;x)
and the scattered waves from all the other fibers. The exciting field u{*(r) for the fiber with its center
located at r; can be expanded using eigenfunctions of the Helmholtz equation with respect to the origin
atr; ie.,

u(r) = u™(r) + > _uwt(r) = Y dJ, (ki |r — x;|) exp(ind;), (22)
./;i =l

where J,( ) is the nth order Bessel function of the first kind, 6; is the angle from r; to r, and the summation
for the integer j is taken for all fibers but the one at r;.

—||lo0eeeecc000000000000000000!
00000000000000000000000000'
00000000000000000000000000'
00000000000000000000000000'
X xxx oo eee000000 X1
® X

Fig. 5. Two-dimensional composite with square fiber arrangement of finite length.
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The scattered wave from the fiber at r; can be expanded as

Z b H,(ky|r — 1;]) exp(ind),), (23)

n=—00

where H,(-) is the nth order Hankel function of the first kind. Based on the notion of transfer matrix related
to the scattering by a single fiber (Waterman, 1969), the expansion coefficients of the scattered wave ), can
be related to those of the exciting field @’ as

b _ Tsca i 75 — :ulkl‘];(kla)‘]"(kza> - MZkZJﬂ(kla)J:z(kza)

, ; : 24
W I e (a) (kaa) — ki (k) (ksa) @)

for a circular fiber, where the prime denotes the derivative with respect to the argument.

3.2. Computational procedure

Owing to the perfect periodicity in the x,-direction, the wave field in the medium due to the plane wave
incidence in the x;-direction becomes periodic in the x,-direction, and the fibers aligned in the same vertical
column suffer the same exciting field. Therefore, the governing equations for the multiple scattering prob-
lem can be formulated in terms of the N, fibers in one fundamental block. In this situation, substitution of
Egs. (23) and (24) into Eq. (22) gives

o0

E Ja(ky|r — r;]) exp(inf;) = exp(ikr) + E E E TSC"‘a’ H,(kir — (r; + pHi,)|) exp(im0;,)
n=—00 —o0 =l m=—o00
J#i

+ Z Z Tscaat H k1|l' _ ( l+pHi2)|) exp(im(),«p), (25)

=—00

m=—0o0
P%O

Eq. (25) holds at arbitrary points in the matrix, and consists of the infinite sums over the parameters n
(m) and p. If the wavelength is sufficiently large compared to the radius and spacing of the fibers, the anal-
ysis requires only a few leading terms of the eigenfunction expansions in Egs. (22) and (23). When these
expansions are truncated at a finite level, i.e. up to n==n,,, and likewise for m, Eq. (25) contains
N¢X (2nmax + 1) unknown coefficients a. To determine these unknown variables, Eq. (25) is evaluated at
(2nmax +1) collocation points for each of N, fibers, and the resulting system of linear equations is solved
numerically. Furthermore, the infinite sums with respect to the parameter p are also truncated at a finite
but sufficiently large value in the numerical procedure, since the terms with large |p| corresponds to the ef-
fect of remote fibers whose influence may be negligible as |p| — co. The truncation levels for p are chosen
large enough not to influence the numerical results at reasonable computational costs, depending on the
frequency involved in each problem. For more details, readers are referred to the previous paper (Biwa
et al., 2004).

It is noted in passing that in principle the analysis of the square arrays at hand only needs a fundamental
block containing one fiber in the x,-direction, owing to the periodicity in this direction. Such a small fun-
damental block saves the computational cost significantly as the number of unknown variables becomes
much smaller. Otherwise the choice of the fiber number in x,-direction is not essential, as the numerical
parameter p in Eq. (25) has to be chosen accordingly so as to simulate the infinitely repeated nature. In
our present study, the 6x10 and 6x26 arrays have been chosen as they also serve as a reference to which
the influence of the perturbed fiber arrangement on the wave transmission behavior is studied numerically,
as will be reported elsewhere.
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3.3. Energy transmission coefficient

The energy transmission coefficients through the fiber-reinforced region have been computed for differ-
ent incident frequencies, assuming the acoustic properties relevant to the Ti-alloy matrix (y; =45 GPa,
p1= 75400 kg/m?) and the SiC fibers (uo =177 GPa, p>=23200 kg/m’) (cf. Rokhlin et al., 1995; Biwa and
Shibata, 2000). The fibers are arranged as a square lattice in the fundamental block with the ratio of cen-
ter-to-center fiber spacing d to the fiber radius a as d/a =3.545 resulting in the fiber volume fraction in the
block to be ¢ =na*/d>=0.25.

Fig. 6(a) and (b) show the results for the model consisting of 10 fiber columns (10-cell fiber arrangement)
and that with 26 columns as shown in Fig. 5 (26-cell fiber arrangement), respectively, where the angular
frequency is normalized as (d/c;)w. In this figure, the energy transmission coefficient has been calculated
as the ratio {e)(x;)/{e)o, where {e)(x;) is the time-averaged energy flow in the x,-direction in the reinforced
medium averaged also in the x,-direction, and {e), is the corresponding quantity in the absence of the fibers,
namely the energy flux density of the incident wave (Biwa et al., 2004).

el [ () ().

where u= u; or u, depending on the position on the integration path. Being defined this way, T, should be
independent of the coordinate x; which serves as a check for the numerical accuracy, although it has been
evaluated at x;=1.1 L in accordance with the previous study (Biwa et al., 2004).

15 | :
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Fig. 6. Energy transmission spectra for (a) the 10-cell fiber arrangement and (b) the 26-cell fiber arrangement.
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For these fiber arrays, the first stop band appears when the wave number k that arises in the reinforced
region meets the condition kd =, and so does the second stop band when kd=2n (Biwa et al., 2004). In the
case of 10-cell fiber arrangement, the energy transmission coefficient falls to low levels in the first and second
stop bands. In the 26-cell fiber arrangement, the energy transmission appears to vanish completely in the first
stop band, though the second stop band is not as complete as the first one. Furthermore, significant oscil-
lation of the energy transmission coefficient with the frequency is appreciable in both cases. The frequency
intervals of the oscillation are much smaller in the 26-cell arrangement than in the 10-cell arrangement.

4. Discussion
4.1. One-dimensional multilayered structures

In the foregoing sections, it has been demonstrated that the energy transmission coefficient of the finitely
periodic structures exhibit oscillatory behavior against the frequency in both one-dimensional and two-
dimensional cases. Moreover, the oscillation has been observed to be quite remarkable near the edge of
a stop band.

From Egs. (14) and (16), the energy transmission coefficient in the one-dimensional problem discussed in
Section 2 is shown to take the value of unity, namely, the full transmission occurs, when

f=cos! (cosy1 cos 7, —% sin y, sinyz) = %, n=12...,N—-1, (27)
for the first pass band, since at these points Egs. (12) and (16) reduce to
MY = —MI (28)
sin f§
and
TV = texp(—ik;NA). (29)

Clearly, these points are equally spaced in € (0,m) . Bendickson et al. (1996) have also pointed out this
constant-interval nature of full-transmission points in the f space in the context of one-dimensional pho-
tonic crystals assuming a quarter-wave stack. The numerical examples shown in Section 2 all conform to
this observation. Namely, in Fig. 2, the 5-cell, 10-cell, and 20-cell layered structures have 4, 9, and 19
full-transmission points, respectively, in the first pass band.

The above feature is now examined in more details for the one-dimensional case that permits a rigorous
analysis. Eq. (10) defines the relation between the Bloch phase f§ and the angular frequency of the incident
wave . This relation is shown in Fig. 7 for different values of W,/ W, using representative parameter of (d»/
¢>)/(di/c1)=1. Tt should be noted that this relation does not depend on the cell number N. From (10), d/
dw in the low-frequency limit is given by

lim%— di d_ﬁ Wi+ W3 didy it
(/)Hodw_ 2 2 ﬁ

¢ W W, cic
The above expression implies that in the f—w plane, the curve defined by Eq. (10) approaches the straight
line of the slope C, defined by

C:lim%: d_% d_% MM (31)
" o-0 dw i g WiWy cey

(30)
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Fig. 8. Variation of the interval between full-transmission points with the normalized frequency for the one-dimensional multilayer.

On the other hand, as 8 approaches n from downwards, one observes df/dw — cc.

In the f space, the (N—1) full-transmission points with 7, = 1 are located with the same interval n/N
from Eq. (27). In Fig. 7, such points in the case of N =20 are illustrated as symbols together with the the-
oretical curves of Eq. (10). When the frequency is sufficiently low (when f is sufficiently small), the corre-
sponding interval in the w space is evaluated as n/(NC) using the slope C introduced above. As f—m,
however, the frequency interval becomes smaller. Fig. 8 shows the plot of the frequency interval of neigh-
boring full-transmission points Aw (normalized by the low-frequency limit /(NC)) as a function of the
center frequency of each interval. The plots appear to fall on a continuous curve given by g(w)=n/
(Ndp/dw), which is governed by the parameters of the single cell, W;, W, di/c; and d>/c,. Therefore,
the frequency interval of the oscillation becomes narrower as the edge of the stop band is approached.
Moreover, this effect is more appreciable when the cell number N is larger.

4.2. Two-dimensional fiber arrangements

Turning our attention to the two-dimensional fiber-reinforced media, the results shown in Section 3
reveal some features much similar to those clarified above for the one-dimensional multilayers. Namely,
the full-transmission points in Fig. 6 appear to divide the frequency range from 0 to the edge of the first
stop band into 10 and 26 intervals for the 10-cell and 26-cell fiber arrangements, respectively, although
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the numerical nature of the plots makes the precise identification of full-transmission points somewhat
ambiguous.

In order to highlight the similarity as well as the difference between the one-dimensional multilayers and
the two-dimensional fiber arrays, the latter problem is now reduced to the one-dimensional problem in the
following way, in order to see which features in the two-dimensional results fit in the one-dimensional the-
ory and which do not. To this purpose, the wave field for a single vertical column of the fibers, that is, the 1-
cell fiber arrangement of the length A =d as shown in Fig. 9(a), is analyzed by the computational procedure
outlined in Section 3. Then, the obtained wave field u(xi, x,) in this two-dimensional problem is averaged
for the x,-direction to obtain the reduced one-dimensional wave field,

ﬁ(xl)zé/o u(x1,x;) dx. (32)

The complex amplitude transmission and reflection coefficients 7'y and R; of the 1-cell fiber arrangement
are then identified from the above reduced wave field using the following relations:

u(A)

T =0,
" exp(ik A)

Ry =u(0)—1. (33)
With the stress—displacement relation in the matrix 7(x;) = +ip, k u(x,) for the forward (+) and back-
ward (—) propagation, the one-dimensional transfer matrix expression similar to Eq. (4) is given by

{ T exp(ik, A) }:{M“ Mlz]{ 1+ R } (34)

i,ullel exp(lkl/l) M21 M22 l,ulkl(l —R1>

for the variables at x; =0 and x; = A. Likewise, if the time-reversal process of the above problem as shown
in Fig. 9(b) is considered (Bendickson et al., 1996), one obtains the following relation:

{ T exp(—ik; A) } _ {Mn M12}{ 1+R } (35)
—I,U,]leT exp(—lkl/l) M21 M22 —ll,tlkl(l —RT) ’

where T} and R} are the complex conjugates of 7 and R; respectively.

From Egs. (34) and (35), it is possible to determine the four components of the transfer matrix M in
terms of 77 and R;. If the components of M are identified for different frequencies in this manner, Eq.
(10) in the one-dimensional theory gives the relation between the Bloch phase and the incident angular fre-
quency for the square fiber array at hand. This is demonstrated in Fig. 10, which shows a behavior similar
to Fig. 7 in the one-dimensional multilayers, exhibiting jumps of the frequency at f=m and f=2m.

@ e ® e
iy @
exp(ikx) 1@ Texp(ikx,) R exp(ikx) 1 @ |
— 0 — — o
Rexp(-ikx) i@ exp(-ikx) | @ 1Ty exp(-kx)
— — T —
'@ '@
@ @
0@ A X 0@ A X,

Fig. 9. Wave propagation in the 1-cell fiber arrangement: (a) the forward problem and (b) its time-reversal problem.
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Fig. 10. Variation of the Bloch phase with the normalized frequency for the fiber array obtained by the reduced one-dimensional

theory.

It is now possible to obtain the transfer matrix for N cells from Eq. (12). Then, the wave transmission
spectrum of the two-dimensional N-cell fiber arrangement can be calculated by Eqs. (16) and (17) from the
above transfer matrix of the 1-cell fiber arrangement, if the one-dimensional theory is applicable. Fig. 11(a)
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Fig. 11. Energy transmission spectra for (a) the 10-cell fiber arrangement and (b) the 26-cell fiber arrangement, predicted by the

reduced one-dimensional theory.
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and (b) show the so-constructed transmission spectra for the 10-cell and 26-cell fiber arrangements, respec-
tively, as solid lines. For comparison, the results from the direct multiple scattering simulation shown in
Fig. 6 are also plotted as symbols. It is quite remarkable that both results agree extremely well in the
low-frequency range up to about (d/c;)w =6, which encompasses the first stop band. Especially, the oscil-
lation patterns of the transmission coefficients as well as the first stop-band profiles are very accurately
reproduced by the reduced one-dimensional theory.

From Fig. 11, it is also clear that the transmission spectra of the reduced theory start to differ signifi-
cantly from those based on the direct multiple scattering simulation when the frequency exceeds the level
of about (d/c;)w=6. In particular, the reduced theory predicts the opening of very wide band gaps at
kd=2m (second stop band) for both N=10 and N =26, while the direct simulation gives narrower (26-cell
fiber arrangement) or shallower (10-cell fiber arrangement) band gaps. This discrepancy indicates the fail-
ure of the one-dimensional reduced theory at such high frequencies. The energy transmission through the
fiber arrays predicted by the direct multiple scattering simulation in this frequency range is likely due to the
fiber-to-fiber interactions in oblique directions, which cannot be resolved within the framework of the one-
dimensional theory. Further analysis seems to be needed in order to fully understand the success/failure of
the one-dimensional theory depending on the frequency range.

5. Conclusion

Wave transmission characteristics in periodic media of finite length have been examined from theoretical
as well as numerical points of view. Two examples of such media have been considered, namely, one-dimen-
sional multilayered media with finite-length periodicity and two-dimensional square arrays of aligned fibers
within a finite length. From these one-dimensional and two-dimensional analyses, the influence of the finite
length of the periodic microstructure on the wave transmission characteristics has been discussed.
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